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We establish a complete treatment of the tensorial symmetry properties of the four-wave sum and
difference frequency mixing, phase matched in uniaxial and biaxial crystals. This study is based on the
formalism of the “field factor” which we have previously introduced [B. Boulanger and G. Marnier, Opt.
Commun. 79, 102 (1990)]. The 14 configurations of polarization allowing phase matching are considered
and the corresponding effective coefficient is calculated for the 19 uniaxial and 8 biaxial classes. The
effective coefficient is nil in a few cases. The inequalities between refractive indices, which determine the
collinear phase-matching directions, are given according to the optical sign. We calculate the field fac-
tors for three real nonlinear crystals: BaB,0,, KTiOPO,, and thiosemicarbazide cadmium chloride

monohydrate.

PACS number(s): 42.25.—p, 41.20.—q, 42.65.Ky

I. INTRODUCTION

Maker [1] considered the irreducible tensorial decom-
position of the product of the coupled electric fields in or-
der to study the time dependence of the orientation-
dependent molecular-pair distribution function of liquids
by “quasielastic” second-harmonic light scattering.
Later, we took an interest in the study of the tensorial
product of the coupled electric fields, which we called the
“field factor,” for the determination of the independent
elements of the second- and third-order electric suscepti-
bility tensors x¥'? and x'¥ of crystals from phase-matched
second- and third-harmonic generation experiments [2,3].

We developed the formalism of the field factor for the
complete study of the three-wave nonlinear optical in-
teractions phase matched in uniaxial and biaxial crystals,
which allows a unified description of the different types of
interactions [4]. Zyss used this formalism and demon-
strated that the most efficient quadratic nonlinear mixing
in an octupolar medium (D3, ) is obtained with circularly
polarized waves [5].

This paper deals with the complete study of the col-
linear phase-matched four-wave nonlinear optical mixing
in uniaxial and biaxial crystals. We show how the field-
factor formalism allows one to precisely obtain the real
tensorial contribution of the linear optical properties to
the symmetry of the third-order nonlinear optical proper-
ties. In fact, the refractive indices and their dispersion in
frequency determine the existence and the loci of the
phase-matching directions which impose the directions of
the electric-field vectors of the interacting waves. Then,
we describe a four-wave parametric interaction in a crys-
tal by two four-rank tensors: the third-order electric sus-
ceptibility tensor X(S) and the field tensor F*), which is
equal to the tensorial product of the electric-field vectors.
Each element F,, called the field factor, is a trig-
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onometric function of the direction of propagation. The
beam interacting with a third-order nonlinear crystal is
then described by its pulsations w,w,, 03,04 (0=, + @,
+w;) and its field tensor. The effective coefficient .,
which depends on the efficiency of the interaction, is
equal to the tensorial contraction of F® and y'*). The
symmetry of ¥ is imposed by the orientation symmetry
of the crystal and the symmetry of F©®) is governed by the
vectorial properties of the electric fields characteristic of
the optical class, uniaxial or biaxial. In this paper, we
systematically study the symmetry of F'® according to
the 14 configurations of polarization which allow phase
matching. We also contract F® and x'* for the 19 uni-
axial and the 8 biaxial crystal classes for each phase-
matched configuration of polarization. The effective
coefficient is nil in a few cases and we find the same for-
bidden crystal classes as those determined by Midwinter
and Warner for the particular case of the third-harmonic
generation assuming Kleinman’s conjecture and without
consideration of the field factor [6].

We take the example of three real nonlinear crystals,
BaB,0, (BBO), KTiOPO, (KTP), and thiosemicarbazide
cadmium chloride monohydrate (TSCCC), for the calcu-
lation of the field factors. We show with BBO how the
study of the field-factor functions simply allows the judi-
cious choice of the configurations of polarization and
phase-matching directions for the determination of the
independent coefficients of x'* by third-harmonic-
generation (THG) efficiency measurements.

II. DEFINITIONS

A. Four-rank electric susceptibility and field tensors

The efficiency of a nonlinear optical parametric in-
teraction depends on the effective coefficient x.4(6,¢),
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defined by the tensorial contraction of the nonlinear po-
larization vector PNL(a),B,qS) with the unit electric-field
vector e(w,0,¢). o is the circular frequency of the con-
sidered wave in the direction of propagation, with the
spherical coordinates (6,¢) [7]:

Xl 0,0)=e(w,0,6) PN (w,0,¢) . (1)

6 and ¢ refer to the optical frame (x,y,z).

PNY(w,0,4) is also linked to the nonlinear electric sus-
ceptibility tensor by a tensorial contraction. For the
four-wave sum-frequency mixing (SFM) and difference-
frequency mixing (DFM) with the circular frequencies
W4, 0y, ®,, and vy, we have

P w,,0,8)=x(w,)ie(w,,0,¢)e(w,,0,d)e(w,,0,) .
)

(wg,0p,0,,0y) correspond to (w4, 4, 0,,w;) for the SFM
(4= Fw,+w;), to (0,w0sw0,w;) for the DFM
(0=w4—wy;—w3), to (w,,w,w,0;) for the DFM
(0,=ws—o;—w;), and to (w30, 0,0,) for the DFM
(03=w4— 0~ w,).

Thus the effective coefficient is the tensorial concentra-
tion of two four-rank tensors:

Xeﬂ‘(wa7wb’wcvwd’0’¢):X(B)'F(3)(6’¢)

= E Xijkl(wa )F,-jk,(wa,a)b,a)c,a)d,ﬂ,gb) . (3)
ij k1
The indices i, j, k, and [ refer to the optical frame.
Fm(wa,wb,wc,wd,@,qb) is the field tensor given by the
tensorial product of the unit electric-field vectors of the
four interacting waves:

Fm(a)a,mb,wc,wd,B,qﬁ)

=e(w,,0,d)e(w,,0,d)e(w,,0,p)e(wy,0,4) . (4)

The correspondence between o,,0,,0,,0; and
@1, 0,,03,0,, according to SFM and DFM, is the same as
that for relation (2). Each element F;, is called a field
factor and is a trigonometric function of the spherical
coordinates (6,¢) and only depends on refractive indices.

Thus F© )(9,¢) is a tensor characteristic of the
configuration of polarization of the beams interacting
with the nonlinear crystal. Note that F(6,¢) must not be
confused with F(0,¢,d) which is the designation given by
Midwinter and Warner [6] for the effective coefficient, d
being the nonlinear polarization tensor.

From (4), it is obvious that the field factor remains un-
changed by concomitant permutations of the electric-field
vectors and the corresponding Cartesian indices. Thus
there exist particular relationships between field factors
of SFM and DFM, i.e., for all directions of propagation:

ey e.e, e
Fi 11 o=+ o,+ ;)

— %1%4¢2€3 —_
_Fjikl (0=~ 0,—w3)
— %2%4¢1¢3 —_
=Fiij1 (0= 04~ 0~ o3)
23248182

= lijk (w3=a)4—w1—w2) . (5)

e; is the electric-field vector of the wave at
w; (i=1,2,3,4). The symmetry of tensor F'*(0,¢) is
governed by the vectorial properties of the interacting
electric fields which impose restrictions and relations be-
tween F;, elements and so reduce the number of in-
dependent elements. This will be studied in Secs. III and
IV with the symmetry introduced by equalities between
frequencies according to the configuration of polariza-
tion.

B. Refractive indices in a direction of propagation
We consider four collinear wave vectors k(w;,0,¢):
k(w;,0,¢)=[w; /cln(w;,0,$)u(6,¢) (i=1,2,3,4) (6)

with w;=2wc /A;, where A; is the wavelength of the ith
wave. u(8,¢) is the unit vector of the direction of propa-
gation with the Cartesian coordinates (ux,uy,uz) given
by

u, =cos$sinf , u,=singsinf , wu,=cos6 . (7)

y

x,y,z refer to the orthonormal optical frame which corre-
sponds to the principal axes of the index ellipsoid.

n(w;,0,¢) is the refractive index, at the circular fre-
quency ;, given by the Fresnel equation which admits
two solutions [7]:

. ) 172
n(w;)= "B, —(B2—4C,) (8)
and
n (w;)= % v ” 9)
—B;+(Bf—4C;)
[n M (w;)>n (w;)] with
B;=—ul(b;+c;)—ul(a;+c;)—uXa;,+b;), (10
Ci=u?b;c;+ula;c;+ulab; , (an

with

a;=nXw;), b=n"4o;,), ¢=nXo,) . (12)

ny(®;), n,(w;), and n,(w;) are the principal refractive in-
dices of the index ellipsoid at the circular frequency o;.

The biaxial class corresponds to the case where n,, ny,
and n, are different. The equality between two principal
refractive indices defines the uniaxial class. The anaxial
class, which corresponds to the equality of all refractive
indices at a given circular frequency, is not studied in the
present work. The calculation of the electric-field vectors
e’ and e, the two eigenmodes associated with n * and
n~, will be specified in Sec. III for the uniaxial class and
in Sec. IV for the biaxial class.

C. Conservation of momentum and
configuration of polarization

The conservation of momentum of the nonlinear in-
teraction in the direction u(6,¢) is satisfied when the
wave vectors of the four interacting waves verify the rela-
tion
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k(w,,0,¢)+k(w,,0,¢)+k(w;,0,0)=k(w,,0,¢) . (13)

Such a direction is called a phase-matching direction.
According to (6), Eq. (13) becomes

o n(w,0,¢)+wn(w,,0,¢)+w;in(ws;,6,4)
=w4n(w,,0,0) . (14)

The birefringence [n " (w,)%n T (w;), i =1,2,3,4] and the
dispersion in frequency of the refractive indices
(P () <n ™ (0)<nt () <n ™ (w,) when
o) <w,<w3;<w,] condition the possibility and loci of
collinear phase-matching directions and thus the
electric-field vectors of the interacting waves.

There are two possible values, n " and n ~, given by (8)
and (9), for each of the four refractive indices, that is, 2*
possible combinations. Among these combinations, only
seven are compatible with the dispersion in frequency
and with the conservations of energy and momentum.
Thus the phase matching of four-wave interaction is al-
lowed for seven configurations of polarization, given in
Table I.

The designation of the seven corresponding phase-
matching relations according to the four SFM and DFM
interactions is of the same kind as for three-wave interac-
tions [4], for the configurations (+ + + —), (—— 4+ —),
(—+——), and (+———): type I corresponds to the
case where the three waves whose frequencies are added
or subtracted have the same polarization state. The
designation of types II, III, and IV is then arbitrary.

The criteria corresponding to type I cannot be applied
to the three other configurations (— ++ —), (+—4 —),
and (++ — —). We choose to designate each of the cor-
responding phase-matching relations by the same number
Vi, VI, and VII, respectively, with the superscript
(i=1,2,3,4) corresponding to the number of the frequen-
cy generated by the sum or difference. Table I gives the
correspondence between phase-matching relations,
configurations of polarization, and types according to
SFM and DFM.

III. UNITAXTAL CLASSES

The uniaxial class is characterized by the equality of
two principal indices, called ordinary indices
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(ny,=n,=n,); the other index is called the extraordinary
index (n,=n,). The indices’ surface, whose external and
internal sheets are given by Egs. (8) and (9), respectively,
has one ombilic along the z axis, called the optical axis.
The ordinary sheet is spherical and the extraordinary one
is ellipsoidal with z as the revolution axis [8]. The sign of
the class is defined by the sign of the birefringence
n,—n,. Thus, according to these definitions, (n,,n,) cor-
responds to (n T,n ) for a positive class and to (n ",n ™)
for a negative class.

The phase-matching directions of the seven phase-
matching relations are given by the intersection of the
internal sheet at w, and a combination of the internal and
external sheets at w;, w,, and w; according to Table I.
For the positive uniaxial class, the principal refractive in-
dices must verify

wn%(04) <onw;)+wnb(w,)+on(w,) . (15)
For the SFM(w,), (n%n® n°) correspond to

(n%n®n°) for typel,

(n°n°n®) for type II ,

(n°n®n? for type III ,

(n%n°%n® for type IV ,

(n°%n%n¢ for type V4,

(n%n°n®) for type V14,

(n%n%n° for type VII* .

The correspondence between DFM and SFM is given in
Table 1. The inequalities for the negative uniaxial class
are

w4n(w,) <on %)+ on%w,) +on(w;) . (16)
For the SFM(w,), (n%n® n¢) correspond to

(n°%n°n® for typel,

(n¢n¢n° for type II ,

(n¢n°%n®) for type III ,

(n%n®n®) for type IV ,

TABLE 1. Definition of the types of interactions according to the phase-matching relations and the configurations of polarization.

e’ are the electric-field vectors associated with the refractive indices n ¥ ™. (w;,w,,w;,0,) are the pulsations of the four interacting
waves.
Configurations of polarization Types of interaction

Phase-matching relations [N o8 w, w3 SFM(w,) DFM(w,) DFM(w,) DFM(w;)
oy =omni tony +ond e et et et I II III ) AY
ony =ony fony +oni e~ e e” et I 111 v I
wn; =ony fony +osny e~ e~ et e” 111 v I 11
oy =oni ‘om; fony e et e” e~ v I II 111
ony =omny fony +oni e e et et v \'4 \'& V3
oy =omnt +aony +ong e~ et e” et vI* vI! VI? v
oy =omni tond tony e et et e vir¢ VII! VII? Vi3




(n%n°%n° for type V*,
(n°n¢,n° for type VI*,
(n°n°ne) for type VII* .

It is obvious that any phase matching is possible along
the optical axis (n°=n°) of the nondispersive crystal.

Table II gives the configuration of ordinary and ex-
traordinary polarizations for the negative and positive
uniaxial classes corresponding to the seven phase-
matching relations. The 14 possible configurations of po-
larization can be divided into three groups on the basis of
the number of ordinary (o) and extraordinary (e) waves:
the four interactions of three ordinary and one extraordi-
nary waves, which we call 3oe, and the four other, cou-
pling three extraordinary and one ordinary waves, 3eo;
these two groups correspond to types I, II, III, and IV.
The six configurations of two ordinary and two extraordi-
nary waves, 202e, are related to types V¢ VI?
VII? (a=1,2,3,4). The components, in the optical frame
(x,y,2), of the ordinary and extraordinary unit electric-
field vectors e’ and e® at the circular frequency w are

el=—sing , e;’=+cosd> , e2=0, (17)
exs=—cos[0tp(0,w)]cosd ,
e;=—cos[0+p(0,w)]sing , (18)
ef=sin[01+p(6,0)] ,
with — for the positive class and + for the negative
class.
p(6,w) is the walkoff angle, given by
_ cos?0 , sin%0
p(6,w)=arccos | | ——+——
niw) njlo)
cos?0 | sin?0 |7
ny(w) nylw)

For a uniaxial crystal, n, =n, and n, =n,.

Note that p(6,»)=0 for a propagation along one of the
three principal axes. For each direction of propagation
(0,¢), allowing phase matching or not, the ordinary
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electric-field vector is orthogonal to the extraordinary
one:

e%(e;,0,4)-ew;,6,¢)=0 . (20)

This relation is satisfied when ®; and w; are equal or
different.
A. Interactions between three ordinary waves
and one extraordinary wave (3oe)

Four 3oe configurations of polarization are possible ac-
cording to Table II: (eooo), (0ooe), (00oeo), and (oeoo).

(a) The number of nonzero elements of the field tensors
varies with the direction of propagation (6,¢).

(i) Out of the principal planes (60°,90° and ¢+0°,90°)
only the z components of the ordinary waves, e/, are nil
by definition, which leads to the following nil field fac-
tors:

Fipjy =Fy;

izt = Fije =0 for (eoo0),

F iy =Fy=F; ;=0 for (oove) ,

F,ju=F;

zj iz

F,jy=Fy,

w =F;

ijkz =0 for (ooeo),

1 =F;, =0 for (oeoo) .

(ii) In the x-y plane (6=90° any ¢), the three zero
components are e/, ey, and ey, which leads to relations
(21) and

F, ;=0 and F,;,=0 for (eooo),

Fijkx

F

ijxl

=0 and F;;,=0 for (oooe) ,

jky
F

=0 and F;;;=0 for (ooeo) ,

Fiu=0 and F,,=0 for (0eoo) .

(iii) In the x-z plane (¢ =0°, any 0), the three zero com-
ponents are e/, ef, and ej, and in the y-z plane (¢$=90°,
any 60), they are ezo, ey", and ef, which leads, for the two

planes, to relations (21) and the following:

TABLE II. Correspondence between the types of interactions and the configurations of polarization
in term of ordinary (o) and extraordinary (e) waves according to the optical sign of the direction of

propagation.

Types of interaction

Configurations of polarization

Negative sign Positive sign

SFM(w;) DFM(w,;) DFM(w,) DFM(w;) @, W, W, W, W, @, w, w3

I II III1 v e o ) ] o e e e

I 111 v I e e e 0 0 o o e

II1 v 1 11 e e o 3 ] ) e o

v I 1I III e ] e e o e 0 o

v4 v! v? V3 e e 0 ) 0 ) e e

vI¢ vI! vI? vI? e ) e 0 0 e 0 e
vII* vII! VII? vIE e 0 e 0 e e
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Fiopy =Fiju =Fijxa=0 and F,;; =0 for (eooo0) ,

F ik =Figy=Fijay =0 and F;;, =0 for (oooe) , 23)
Fojxy =Figg=Fijo =0 and F;;,, =0 for (ooeo) ,
Fojji=Fijaqi=Fij3, =0 and Fy;;=0 for (0eoo) .
(a,b)=(x,y) for the x-z plane and (a,b)=(y,x) for the

y-z plane. Hence, according to (21)-(23), the 3oe field
tensors have 24 (=23X3!) nonzero elements for the
phase- matchmg directions out of the prmmpal planes,
8 (=23%1")in the x-y plane, and 2 (=13X2!) in the x-z
and y-z planes. The only nonzero element along the x
axis and the y axis are F,,,, for (eooo), F,,,, for (oooe),
F,,,, for (ooeo), and F,,,, for (oeoo) with a =y along the
x axis and a =x along the y axis.

(b) The number of relations between field factors which
are due to the orthogonality property (20) is given by the
number of possible choices without repetition of two or-
thogonal polarizations among the four polarizations, i.e.,
6 (=41/[21(4—2)]):

Frij+F,,; (+F,;=0)=0, (24)
Frinj+Fyy (+ij 0)=0, (25)
Fipej+Fy, (+F,,;=0)=0, (26)
Fije+Fy; (+F,,=0)=0, 27)
Fup+F, (+F,;,=0)=0, (28)
Fyjx+Fyyyy (+F;;,,=0)=0 (29)

i and j are equal to x or y (the field factors with i or j
equal to z are nil). Each tensor obeys three of the previ-
ous equalities:

(eooo) (24), (25), and (28) ,
(oooe) (27), (28), and (29) ,
(0ooeo) (25), (26), and (29) ,
(0eoo) (24), (26), and (27) .

The combination of the three relations of orthogonality
for each configuration of polarization leads to specific

equalities. For example, the combination of (24), (25),
and (28) for (eooo) leads to

Frxxx= _Fyyxx = _Fyxyx = AFyxxy ’

Fyyyy = TPy = T Fayey = 7 Frpp (30)
F iy = F ey T Fyyyn = T F oy = 7 Faps = " Fany -

The four 3oe field tensors are symmetric in the three
Cartesian indices relative to the ordinary waves for the
field factors with x or y as the Cartesian index relative to
the extraordinary wave.

(c) The nondispersion in frequency of the direction of
the ordinary electric-field vectors leads to the same sym-
metry as the previous ones but also to symmetry in the
three ordinary Cartesian indices of the field factors with z
as an extraordinary Cartesian index:

Fr'(6,¢,0,,04,0.,0)j-k,k-1] , (31)

0002

ljkl (9 ¢’ a’wb’wc’wd)[i'j:j‘k] s (32)
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0060

l]kI (9 ¢ wa’wb’mc’a)d)[i'j»j'l] > (33)
71(60,0,0,,0,,0.,0,)[i-k,k-1] . (34)

T,pi[a-b] signifies that the tensor T is symmetric in the
two indices a and b, i.e. [9],

Topir = Toas - (35)

These equations are valid for any value of w,, ©,, ®., and
®, contained in the transparency range of the crystal.
Equalities between frequencies do not create any new
symmetry.

(d) The four 30e F® tensors have nine independent
elements according to orthogonality relations (24)—(30)
and to equalities (31)-(34) due to the nondispersion in
frequency of the ordinary electric-field vectors.

The matrix representation of the (eooo) field tensor for
phase-matching directions out of the principal planes is
given in Table III, taking into account the previous rela-
tions. The three other field tensors are deduced from the
previous one by associated permutations of the Cartesian
indices and the corresponding polarizations. According
to relations (5), the magnitudes of two permutated ele-
ments are equal if the permutation of polarizations are
associated with the corresponding frequencies. Thus, ac-
cording to the definition of the types given in Table II, it
is the case for permutations between the following in-
teractions.

(i) (eooo) SFM(w,) type I <0 and the three (oeoo) in-
teractions, DFM(w,) type I1 <0, DFM(w,) type III <O,
DFM(w;) type IV <0.

(ii) The three (oooe) interactions, SFM(w,) type I1>0,
DFM(w,) type III >0, DFM(w,) type IV >0, and (eoo00)
DFM(w;) type I>0.

(iii) The two (ooeo) interactions, SFM(w,) type III> 0,
DFM(w,) type IV >0, (eooo) DFM(w,) type 1>0, and
(0ooe) DFM(w3) type I1> 0.

(iv) (0eoo) SFM(w,) type IV >0, (eooo) DFM(w,) type
I>0, and the two interactions (ooeo), DFM(w,) type
II1> 0, DFM(w;) type ITI > 0.

Equalities between frequencies do not create any new
symmetry.

(e) According to (4), (17), (18), and (19), the trig-
onometric functions of the nine independent elements of
the 3oe field tensors are

(=1,

(T):f(g¢)g(29) ,

@=sPe

=18,

3)=(3)=13")=f e, (36)
3)=(3)=3"=fPg¥ ,
(4)=(4)=@4")=—(5)=fPg? ,
(H)=@)=@")=—03)=rPg? ,

(6)=(6)=(6")=—(6)=—(6)=—(6")=f g

’
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with
[ =cos’psin’p , 9 =cos’s,
[ =—sin’p, fi¥=—cos*s,
[ =sin*¢ , fi'=—cos’¢sing , (37
[ =sin*¢cosp , f¥ =singcos’s ,
f¥ = —sin’p coss ,
and

g =sin[0+p(wq,0)] ,
(38)
g(é_e) :cos[eip(wqyg)]

with — for the positive class and + for the negative
class. p(wg,0) is the walkoff angle, given by (19). «, is
the pulsation of the extraordinary wave. @, is equal to w,
for SFM type 1<0, to @, for SFM type II>0; to w, for
SFM type III >0, and to w, for SFM type IV > 0. The re-
lationship with DFM can be done according to Table II.

The correspondence between functions (36) and field
factors F,;, of the different configurations of polarization
is given in Table IV for SFM. The correspondence for
DFM can be done from Table 1V, relations (5), and Table
II.

Each trigonometric function is written as the product
of a ¢ angular contribution, f(¢), with a 6 angular con-
tribution, g(6). This writing is justified because many
functions f(¢) are common to the three groups of
configuration of polarizations 3o0e, 3eo, and 202e; the
functions g (0) are specific to each group but are common
to several trigonometric functions of a given group.

The principle of designation of the trigonometric func-
tions is the following: (i) The Cartesian indices of the field
factor named N are obtained from the field factor named
N by substitution of x by y and y by x. Thus the two
functions N and N are out of phase of 90°. (ii) Three
functions are named N, N’, and N’ when the associated
field factors are equal because of relations (31), (32), (33),
or (34).

(f) According to the nonzero elements of x¥'*’ and to the
field factors given in Table III, we give in Table V the tri-
gonometric functions of the 3oe field factors intervening
in the tensorial contraction of F®®’ and x® for all the uni-
axial classes of orientation symmetry. Table V must be
read with Table IV for the correspondence between the
designation of the function and the field factor according
to the configuration of polarization.

The effective coefficient x.; is nil for the classes
D(622), D¢,(6/m m m), D3,(62m), and Cg,(6mm).
These four classes and the three other hexagonal
classes C;,(6), C¢(6), Cgq,(6/m), have a nil X
under Kleinman’s symmetry conjecture [10] (i.e.,
Xijkili-j,j-k,k-I]). Note that the notation of Herman
Maiigin for the crystalline classes must not be confused
with numerotation of field-factor functions.

As an example and according to Table V, we calculate
the intervening field factors for each type-I collinear
phase-matching direction of direct THG 1.064
um—0.355 um in BaB,0O, (BBO), a negative uniaxial

TABLE IV. Correspondence between 3oe uniaxial functions and field factors according to the four corresponding types of phase-matched SFM(w,). The symbols = and = mean

that the functions (for example, 3, 3', and 3"') are equal in the case of uniaxial crystals and almost equal in the case of biaxial crystals.

3oe uniaxial field-factor functions

6”

61

41:

41

1

Optical

sign

Uniaxial

l
]

l
i

U
]

U
l

1l

Ul
]

Biaxial

Interactions

ZYYX ZPXX ZXYX ZXXY XXYY XYXY XYYX YYXX YXPX YXXY YYYY XXXX YXYY YYXY YYYX XPXX XXYX XXXy

YYVZ XXXZ YYYX XXXy YXPZ YYXZ XYYZ XYXZ XXYZ PXXZ PXPX YYXX XYYX XPXy XXy YXXY YYYy XXXX YXYy YYXY XYYy XPXX XXYX PXXX
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YZYY XIXX YXYY XPXX YIXY YIYX XZYY XZYX YIZXY PIXX PXXY YXYX XXYY XPYX XYXY YYXX YYYy XXXX YYXy YYYX Xpyy XXpX XXXy PXXX

zyxy

ZyYy ZXXX XYYy YXXX ZXpY

Type I (eoo0o)

>0
>0

Type II (0ooe)

Type I (00eo)

>0

Type IV (0eoo0)
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TABLE V. 3oe, 3eo, and 202e uniaxial field-factor functions intervening in the calculation of the effective coefficient for the uniaxi-

al crystal classes.

Uniaxial S4, C4, C4h7 C4u, DZd’ D4, D4h’
crystal classes Cip, Co, Cgp Cey, D3, D¢, Dy, Cs, Cy; C;,, D3, Dy,
Intervening 2,2 4,4' 4" 3.4 3" 1,1 1
3oe field-factor 4,4',4",4,4,3" 2,2 3,3,3”
functions 55 5,5 3,3,3",3,3",3" 4,4,4",4.4 4"
6,6',6",6,6',6" 4,4',4",4.4' 3" 5,5
5,5
6,6',6",6,6',6"
Intervening 2a,2b,2¢,2a,2b,2¢ 4a,4b,4c,4a,4b,4c 2a,2b,2c,2a,2b,2¢ 3a,3b,3c
3eo field-factor 4a,4b,4c,4a,4b,4c 9,9 L 3a,3b,3c,3a,3b, 3¢ 4a,4b,4c¢,%4a,4b,4c
functions 7,7 10,107,10",10,10’,10" 4a,4b,4c,4a,4b,4c 5a,5b,5¢,5'a,5'b,5'c
8,8,8",8,8,8" 5a,5b,5¢,5a,5b,5¢ 6a,6b,6¢
9,9 L 5'a,5'b,5'c,5'a,5'b,5'c 9,9 o
10,10’,10", 10,10, 10" 6a,6b,6¢,6a,6b,6¢ 10,10',10",10,10°,10”
7,7
8,8,8",8,8" 8"
9,9 o
10,10',10",10,10’, 10"
Intervening L1 4,4 all 2a,2b,2'a,2'b
202e field-factor 4,4 8,8 3a,3b
functions 6,6',6,6' 9,9 4,4
7,7,7,7 10,10, 10,10’ 5a,5b
8,8 8,8
9,9 99
10,107,10,10 10,10',10, 10’

nonlinear crystal which belongs to the crystal class
C,,(3m). The refractive indices at the interacting wave-
lengths are the following [11]:

n,=1.6545, n,=1.5339 at A,=1.064 um

n,=1.7055 , n,=1.5766 at A,=0.355 um .

The phase-matching directions of SFM, calculated ac-
cording to Table II and from (39), are located at

B. Interactions between three extraordinary waves
and one ordinary wave (3eo)

(oeee), (eeeo), (eeoe), and (eoee) are the four 3eo
configurations of polarization allowing phase-matching
according to Table II.

(a) The counting of the nil field factors according to the
localization of the phase-matching direction is done on
the same basis than for the 3o0e interactions. We have the
following.

(i) Out of the principal planes:

Fjxy=0 for (oeee) , F;,=0 for (eeeo) ,

zj
0=37.32° for any ¢. The field factors are plotted in Fig. F;;,;=0 for (eece), F,;;=0 for (eoee) . (40)
1. (ii) In the x-y plane: Equations (40) and
J
Fixk1=Fijx1=F,‘jkx =0 and Fiyk,=F,.jy,=F,~jky=O for (oeee) ,
ijkI:Fixkl :Fijxl =0 and ijkI:EykI =Fijy1 =0 for (eeeo) ) ( 1)
4

Fyjy =Firy =Fjjp =0 and F,,

xj i

:Fiykle'jky=0 for (eeoe) ’

F. 'kleijxl:F'jkx:O and ijkle"1=ijy:O for (eoee) .

XJ i i

Jy

(iii) In the x-z and y-z planes: Equations (40) and the
same relations (23) as for the 3o0e interactions but with
(a,b)=(y,x) for the x-z plane and (a,b)=(x,y) for the
y-z plane.

Thus the 3eo field tensors have 54 (=2'X3%) nonzero
field factors out of the principal planes, 2 (=2!X1%) in

[

the x-y plane and 8 (=1'X2%) in the x-z and y-z planes.
There is only one nonzero element along the x axis and
the y axis: F,,,, for (oeee), F,,,, for (eeeo), F,,,, for (eeoe),
and F,,,, for (eoee) with a =y along the x axis and a =x
along the y axis.

(b) The relations between the 3eo field factors which
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FIG. 1. Intervening 3oe uniaxial field-factor functions vs the

phase-matching spherical coordinate ¢, calculated for direct
type-I THG 1.064—0.355 um in BBO (crystal class Cj, ).

are due to orthogonality of the ordinary and extraordi-
nary electric-field vectors are the same as those of the 3oe
field factors.

Each tensor obeys the following equalities:

(oeee), (24), (25), and (28) ,
(eeeo), (27), (28), and (29) ,
(eeoe), (25), (26), and (29) ,
(eoee), (24), (26), and (27) .

The Cartesian indices i and j can be equal to x, y, and z.

The combination of the three relations specific to each
tensor lead to the same equalities of type (30) as for the
3oe field tensors. The 3eo field tensors are also symmetric
in the Cartesian indices x and y relative to extraordinary
waves.

(c) This symmetry can also be deduced from the non-
dispersion in frequency of the projection of the extraordi-
nary electric-field vector in the x-y plane. This property
does not create any new symmetry.

(d) Thus the 3eo field tensors are “less symmetric” than
the 3oe. They have 28 independent elements. The matrix
representation of the (oeee) field tensor is given in Table
III for directions of propagation out of the principal
planes. The three other 3eo field tensors are deduced
from this one by associated permutation of the Cartesian
indices and the corresponding polarizations.

According to relations (5) and Table II, two permutat-
ed field factors have the same magnitude for permutation
between the following interactions:

(i) (0oeee) SFM(w,) type I>0 and the three (eoee) in-
teractions, DFM(w,) type II1>0, DFM(w,) type III >0,
DFM(wj;) type IV > 0.

(ii) The three (eeeo) interactions, SFM(w,) type II1 <O,
DFM(w,;) type III <0, DFM(w,) type IV <0, and (oeee)
DFM(w;) type 1 <0.

(iii) The two (eeoe) interactions, SFM(w,) type III <O,
DFM(w,;) type IV <0, (oeee) DFM(w,) type 1<0, and
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(eeeo) DFM(w;) type I1<O0.

(iv) (ecee) SFM(w,) type IV <0, (0eee) DFM(w,) type
1<0, and the two interactions (eeoe), DFM(w,) type
II1<0, DFM(w;3) type III <O.

(e) Equalities between circular frequencies create new
symmetries which are not valid for all the SFM and
DFM interactions of the same configuration of polariza-
tion. The field tensors are symmetric in the Cartesian in-
dices relative to extraordinary waves at the same pulsa-
tion w:

fos= 0 +oto)k1]

aeee

ljkl (604 w+w2+m [] l] ’

Focee
ljkl (0)4

3i36(3w=w+w+w)[j-k,k—l] , 42)

ototw)lj-k],

l]kl (w4 m+w+w3 [] k] ’

eeoe

k(0= 0t to)j-1],

0= 0+o+o)[k-1] .

The symmetry for DFM can be obtained from (42) and
the permutation relations (5).

(f) The 3eo field tensors are symmetric in the three ex-
traordinary Cartesian indices in the general case
(wp 7w, w,) only if the dispersion in frequency of the
walk-off angle can be neglected (dp(w)/dw=0) in the
range containing the four frequencies.

(g) The expression of the trigonometric functions of the
28 independent elements of the 3eo field tensors are the
following:

D=rLe

M=rield,

20)=fgW , 2b)=rigil =reV
Qa)=rPe, 2b)=rPel’, Qo)=rPsy
Ba)=fWgl? , 3b)=rfPg? , Bc)=fPg? ,
Ga)=rPe’, Bb)=rPe, (Bo)=rsy ,
(4a)=—(4a)=fPg'? , (@b)=—(4b)=1Pe\? ,
(4c)=—(4c)=fPg{" ,

(6a)=—(5a)=—(5'a)=fP g},
(6b)=—(5b)=—(5'b)=fP'g,? (43)
(6c)=—(5¢)=—(5c)=fPey ,
(6a)=—(5a)=—(5a)=fPgif,
(6b)=—(5b)=—(5'b)=fPg(®
(6c)=—(5c)=—(5c)=f Vg

(M=rPet?,

=18 ,
(B)=—(8)=(8")=—(8)=(8")=—(8")=fPgl® ,
(9)=—(10)=—(10)=—(10")=fPg{? ,
(9)=—(10)=—(10)=—(10")=f ¥g? .

||
Il
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There are nine functions f (¢) which are equal to those of
the 3oe field factors; their expressions are given in (37).
The five others are

fP=cosp, ff=—sing, fi¥=
fg¢’=sin2d) , fﬁf’) =sing cos¢ .

—cos?¢ ,
(44)

There are no common functions with the 3oe field factors
among the eight g (8) functions:

g =cos[6ip(wq,9)]005[9ip(w
Jsin[0+p(w

0)]cos[Otplw,,0)] ,

g(AG)Zsin[in(a) ,0) ) Isin[6+p(w,,0)] ,

gi'=cos[0p(w,,0 ]cos[9+p<w Vlsin[6+p(w,,0)] ,
8K =cos[6%p(w,,0)Jsin[0+p(w,,0)]cos[0+p(w,,0)]
g'9) =cos[0+p(w, ]51n[0+p(w,,6)]51n[6+p(w 0],
g =sin[0+pl(o, 0>]cos[9+p 0)lsin[0+p(w;,0)]
g =sin[0xp(w,,6)Isin[6+p(w,,0)Jcos[ 6+p(wy,0)] ,

g}f’—sin[eip(a} ,0)]cos[0tp(w,,0)]cos[ BEp( ws,e)] ,

(45)

with — for the positive class and + for the negative
class. p(w,0) is given by (19). o,, »,, and o, are relative
to the extraordinary waves. (a)q,co ;) are equal to
(w1, ,,03) for SFM type I1>0, to (w4,a),,a)2) for SFM
type I1 <0, to (w40, ®3) for SFM type III <0, and to
(w4,0,,03) for SFM type IV <0. The relationship with
DFM can be done according to Table II.

The correspondence between functions (43) and field
factors is given in Table VI for SFM and from Table VI,
relations (5) and Table II for DFM. Two functions N and
N are related to field factors which correspond by substi-
tution of x by y or y by x. Functions N, N’, and N'’ are
equal and are relative to field factors symmetric in the
Cartesian indices x and y relative to extraordinary waves.
Functions named N,, N,, and N, have the same contri-
bution f(¢) and differ by g (6); the associated field fac-
tors correspond by permutation of z by x and y.

(h) Table V gives the trigonometric functions of the 3eo
field factors which intervene in the tensorial contraction
of F® and ¥®. The effective coefficient is nil for the
same crystal classes than those of the 3oe interactions.

We calculate the intervening field factors for each
type-1II collinear phase-matching direction of direct THG
1.064 pym—0:355 pm in BBO.

The phase-matching directions calculated according to
Table II and from the refractive indices (39) are located
at 6=281.22° for any ¢. The field factors are plotted in
Fig. 2.

C. Interactions between two ordinary waves
and two extraordinary waves (202e¢)

According to Table II, the six 202e possible phase-
matched configurations of polarization are (eeoo), (eoeo),
(eooe), (ooee), (0eoe), and (oeeo).

(a) The nil components of the 202e field tensors are the

y-z plane. Hence, according to (46)

following according to the localization of the direction of
propagation.

(i) Out of the principal planes:

Fijk, :Fijzl

Fijiy =Fi =0 for (eoeo) ,

=0 for (eeoo) ,

Fijy=F ;=0 for (eooe) ,

Fi g =F ;=0 for (ooee) , (46)
F,»jz,=szk,=0 for (oeoe) ,
Fiji, =F ;=0 for (oeeo) .
(ii) In the x -y plane: Equations (46) and
F iy =Figu =0 for (eeoo) ,
Fojp=Fjq =0 for (eoeo) ,
Fy i1 =Fj, =0 for (eooe) , @)
Fijqy=Fj, =0 for (ooee) ,
Figk1 =Fijiq =0 for (oeoe) ,
Figyy=Fjjqy=0 for (oeeo) .
a is equal to x or y.
(iii) In the x-z and y-z planes: Equations (46) and
Fija1 = Fijra = Fyjiy = Fipg =0 for (eeoo) ,
Fiak = Fijig = Fyjig = Fijy =0 for (eoeo) ,
Fiak1 =Fijoy =Fpjpg =Fjip, =0 for (eooe) , 48)
Fyjt = Fiary =Fjp1 = Fijpy =0 for (ooee) ,
F ik = Fijoy = Fypg = Fijp, =0 for (oeoe) ,
Fujx1 = Fijpg = Fippg =F ;=0 for (oeeo) .
(a,b)=(x,y) for the x-z plane and (a,b)=(y,x) for the

—(48), the 202e field
tensors have 36 (=32X22) nonzero elements out of the
principal planes, 4 (=22X12) in the x-y plane, and
4 (=12X2?) in the x-z and y-z planes. The only nonzero
element along the x axis and the y axis are F,,, for
(eeoo) F,,,, for (eoeo), F,,,, for (eooe), F,,,, for (ooee),

F,,,, for (oeoe), and F,,,, for (oeeo), with a =y along the
x axis and a =x along the y axis.
(b) Each 202e field tensor obeys four orthogonality re-

lations instead of three for the 3oe and 3eo field factors:
(eeoo) and (ooee) (25), (26), (27), (28),

(eoeo) and (oeoe) (24), (26), (28), (29),

(eooe) and (oeeo) (24), (25), (27), (29)

i and j are equal to x and y (the field factors with i or j
equal to z are nil).

For each tensor, the combination of the four ortho-
gonality relations leads to specific equalities. For exam-
ple, we have the following equalities by combination of
(25)-(28):
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FIG. 2. Intervening 3eo uniaxial field-factor functions vs the

phase-matching spherical coordinate ¢, calculated for direct
type-II THG 1.064—0.355 um in BBO (crystal class C3,).

Fronx Ty = T F iy = T F = T Fypy T T F
Frny =Fuxyx = —Fyppy = —Fpp (49)
Fyyyx =F yxy —F yxxx —F xpxx

(c) The nondispersion in frequency of the direction of
the ordinary electric field vectors leads to symmetry of
the field tensors in the two Cartesian indices relative to
the ordinary waves:

i‘}?c(;o(e’(ﬁ’wa:wb,wc,wd)[k-l] ,

13%8(8 ¢!wa’wb’wc’md [l"]] ’

Fiji(6,8,04,0p,0c,04)j-1]
(50

Si(;e(e ¢’ma’wb’wc’wd [l k]

S?((;e(o ¢’ ay@Dps WDy [.] k]

ik (6,8,04,0p,0.,0,)[i-1] .

These symmetries are valid for all i, j, k, and /. Note that
according to (49), the field tensors are symmetric in the
Cartesian indices relative to extraordinary waves only if
these indices are x or y; it is not the case with z.

(d) The six 202e field tensors have 16 independent ele-
ments in the general case (0,7 0.7 o ) according to (49)
and (50). The matrix representation of the (ooee) field
tensor is given in Table III for phase-matching directions
out of the principal planes. The five other 202e field ten-
sors are deduced from Table III by associated permuta-
tion of the Cartesian indices and the corresponding polar-
izations.

According to relations (5) and Table II, two permutat-
ed field factors have the same magnitude for permutation
between the following interactions:

(i) For type V'<0, the two

(eeoo) interactions,
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SFM(w,), DFM(w,),
DFM(w,), DFM(w;).

(ii) For type VI' <0, (eoeo) SFM(w,), (0eeo) DFM(w,),
(eeoo) DFM(w,), and (0eoe) DFM(w5).

(iii) For type VII'<0, (eooe) SFM(w,), the two (oeoe)
interactions, DFM(w, ), DFM(w,), and (eeco) DFM(w,).

(iv) For type Vi>0, the two (ooee) interactions,
SFM(w,4) and DFM(w,), and the two (eooe) interactions,
DFM((Uz), DFM(C()3 ).

(v) For type VI'>0, (oeoe) SFM(w,), (eooe) DFM(w,),
(0ooee) DFM(w,), and (eoeo) DFM( ).

(vi) For type VII'>0, (0eeo) SFM(w,), the two (eoeo)
interactions, DFM(w,), DFM(w,), and (0oee) DFM(w).

i refers to w;.

(e) Equalities between frequencies add symmetry in the
Cartesian indices relative to the extraordinary waves for
particular interactions. Then, according to (50), we have

oto,‘o)li-k,j-1],

and the two (oeeo) interactions,

Froeoe
i ]kl ( W4=

i Bo=o+o+o)i-k,j-l],

(0= oto+wy)|i-lj-k],
g Bo=oto+to)li-lj-k],
Hioy=oto+o)i-jk-11,
gk Bo=o+ot+o)li-jk-1] .

(51)

The symmetries for DFM can be obtained from (51) and
(5).

(f) In the general case (w,#*w,Fw,), the six 202e field
factors are symmetric in the two Cartesian indices rela-
tive to extraordinary wave only if the dispersion in fre-
quency of the walkoff angle can be neglected.

(g) The trigonometric functions of the 16 independent
202e field factors are the following:

(1)=(1’)=—fL¢)g<G§) ,
(2a)=(2’a)=—(3a)=—f;)¢>g/(ya) ’
(2b)=(2’b)=—(3b)=—f(¢)g(:9>
(2a)=(2'a)=—(3a)=fPg® ,
(2b)=(2'b)=—(3b)=fPg?®

(4)_f dz) (6 ,

(4)=_f ¢) (9) ,

(5a)=—fWgl® | (5b)=—fWPg® (52)
Ga)=rPgy” (5b>=f‘5‘”g‘£) :
(6)=(6')=—(1=—(T)=—fPai ,
(6)=(6)=—N=—T)=rPgy ,

®=/ Pz

®)=—rP8i’ >
(9)=—(10)=—(10)=(9)=—(10)=—(10")=fP'g;?" .
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The 12 functions f(¢) are common to those of 3oe or 3eo
interactions. The functions g(6) are specific:

g =sin[0+p(w,,0)]sin[6+p(w,,0)] ,

g}‘f’=cos[Bip(w,,0)]cos[6ip(cos,0)] ,
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table, relation (5) and Table II for the correspondence
with DFM.

The principle of designation of the trigonometric func-
tions is the same as for 3oe and 3eo interactions. Thus,
for 202e interactions, two functions N and N’ are equal
and correspond to field factors which are symmetric in

(53)  the Cartesian indices x and y relative to the two ordinar

0) — y

b4 (-5 ) =sin[0+p(aw,,0)]cos[ 0tplw,,0)] , waves or the two extraordinary waves.
(h) The 202e trigonometric functions involved in the

(6) — ;
8x )—COS[in(w,,9)]sm[9ip(a)s,6)] > tensorial contraction of F'® and x'* are given in Table V.
- ) At the opposite of 3oe and 3eo interactions, all the crystal
with — for the positive class and + for the negative classes allow 202e interactions.

class. w, and w, are the pulsations of the two extraordi-
nary waves. (@,,w,) is equal to (w4, @;) for SFM type
V4<0, to (w4 0,) for SFM type VI*<O0, to (w4,w;) for
SFM type VII*<O0, to (w,,w;) for SFM type V*>0, to
(,,w3) for the SFM type VI*> 0, and to (w,,®,) for SFM
type VII*>0.

We give the example of collinear type V4 THG 1.064
pm—0.355 um in BBO. The phase-matching directions
are located at 6=46.91° for any ¢, according to the re-
fractive indices (39). The intervening field factors are
plotted in Fig. 3.

The particular interactions which we have chosen for

The relationship with DFM can be done according to
Table II. The correspondence between functions (52) and
field factors is given in Table VII for SFM and from this

BBO show the interest of F'*) for the study of ¥*’. For
the crystal class 3m and under Kleinman’s symmetry
conjecture, the relations between the x,;, coefficients are

TABLE VII. Correspondence between 202e uniaxial functions and field factors according to the six corresponding types of phase-
matched SFM(w,).

202e uniaxial field-factor functions

Optical
sign 1 i 2a 2'a 2b 2'b 2a 2'a 2b 2'b 3a 3b 3a 3b
Uniaxial = = = = =
Interactions  Biaxial = e = = =
Type V* >0 Xyzz  yXzz  PXXZ  XyXz yXzX XYzZX XYYz YXyz = Xyzy yxXzy YYyZ  yyzy XXXZ XXIZX
Type VI* >0 XZyz  yzXz  yXXzZ  XXyZ YZXX XZYX XYYz  YYXz  XZyy YIXy YYyz  YIZYYy  XXXZ  XZIXX
Type VII* >0 XZzy  yzzx = yXzx = XX2Zy YZXX XZXY Xyzy  YYIX  XZyy YZYX Yyzy  YIYYy  XXZX  XZXX
Type V* <0 zZXy — zzyX = zZXyX = ZXXY X2ZYX XZIXY ZYXy  ZYYX  YIZXy YZIYX zyyy  YZIYYy  ZXXX  XZXX
Type vI* <0 zZXzy — ZyzX = ZYXX  ZXXY XYZX XXzy ZXYY = ZYYX  yXzy YyzX zZyyy YyzZy  ZXXX = XXZX
Type VII* <0 ZXyz  ZyXz  ZYXX  ZXYX XYXZ XXyz ZXYy ZYXYy YXyz YyXz Zyyy YYyZ  ZXXX XXXZ
Optical
sign 4 4 5a Sa 5b 5b 6 6’ 6 6 7 7’ 7 7
Uniaxial = = = =
Interactions  Biaxial == = = =
Type V* >0 XXzzZ  yyzz = YyXz  XXYz Yyzx = XXZy XXXY XXX YYPX YYXy Xyyy YXyy PxXxx Xyxx
Type VI* >0 XZXz  yzZyz = yXyz = XyXz YIPX  XzZXy XXXY XPXX YYYX VXYY XYYy YyXy YXXx Xxyx
Type VII* >0 XzzX  yzzy  YXzy  XyZX YzXy  XZPX  XXPX XYXX YYXy YXyy Xyyy Yyyx  yxxx Xxxxy
Type V* <0 ZZXX  ZZyy = ZXYYy = ZPXX XZYY  YZXX  YXXX XPXX XYYy VXYY YYXy YYyX XXPX XXXy
Type VI* <0 ZXZX  Zpzy  ZYXYy  ZXPX  XYZY  YXZX  PXXX XXPX XYYy YYXYy PXPy  YYYX XXX  XXXY
Type VII* <0 2ZXXZ  ZyyzZ  ZYPX  ZXXY XYYZ  YXXZ PXXX XXXy XYYy YYYX YXyy Yyxy Xyxx Xxyx
Optical _ _
sign 8 8 9 9 10 10’ 10 10’
Uniaxial = = =
Interactions  Biaxial = = =
Type V* >0 XXPy - YYXX  XXXX  YYYy  XpXy XYyxX YXyx  pxxy
Type VI* >0 XpXy  YXyx XXXX Yyyy XXYy XYYX YYXxX  yxxy
Type virt >0 XypxX  YXxXy XXxx yyyy Xxyy Xyxy Yyxx yxyx
Type V* <0 YYXX  XXYY  XXXX YYYY  YXXY XYXY XYYX  YXPX
Type VI* <0 YXPX  XPXy XXXX YYYYy  YXXY XXYYy XYYX = YyxXx
Type VII* <0 XXy  XPYX  XXXX YYYY YXYX XXPY XYXY  YPXX
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XXXX =yyyy =xxyy +xyxy + Xyyx,XX2Z =XZXZ =X2ZZX =YYZZ = YIZYZ = yzZy =ZYYZ =2Zyzy =2Z)y

=2ZXXZ =ZXZX =ZZXX,XXYY =XPXY =XYYX = YXXY = YXYX =YYXX,XXYZ = XXZY = XYXZ

=XYzZX =XZXY =XZPX = —YYyz = — Yyzy = —YZYy = YXXZ =YXZX =YZXX

= —Zyyy =2zXXy =2ZXYX =ZYXX,22ZZ .

There are five independent coefficients according to (54).
The curves of Figs. 1-3 allow the judicious choice of
phase-matching directions for the magnitude determina-
tion of the four useful coefficients at 0.355 um by THG
efficiency measurements (Y,,,, is never solicited because
F,,,,=0 in all cases). All the measurements can be done
in the x-z and y-z principal planes. In the undepleted

pump approximation, we have:
172
Xopyy = [ni‘i"e ] / BL¥*F,,. (55)

11, 3eo 172 11, 3eo,
Xxxzy = [nx-,z } /Bx-’z (szxy +Fxxzy +szxy) . (56)

From (55) and (56), it is possible to solve the following
system for the determination of X ., and X ;.x:

V4 202¢ |12 v4,202
,202e — ,202e
My-z ] B,

X xxzy ( Fzyxx + FyZXX )
+ nyxx FyyXX + XZZXX FZZXX ] ’ (57)

172
V4,202 — V%4 20e
[nx-z ] _Bx-z (nyxxexyy +Xzzxszzyy ).

7 is the THG efficiency and B is a factor which depends,
on the refractive indices and on the fundamental beam
parameters [11].

T T T T T T T T T 17
08 BBO (negative uniaxial crystal) i
TYPE V4 202e THG

0.6 vy 4

0.4

02 | 2a2'a2b2'b

0.0 |

-0.2 10,10',10,10'

FIELD FACTOR f(¢) g(8)

5a,5b
04 |

06 Lo 0 0.0y,
0o 10 20 30 40 50 60 70 80 90

PHASE-MATCHING ANGLE ¢ (deg)

FIG. 3. Intervening 202e uniaxial field-factor functions vs
the phase-matching spherical coordinate ¢, calculated for direct
type-V* THG 1.064—0.355 um in BBO (crystal class Cs, ).

(54)

IV. BIAXIAL CLASSES

In a biaxial crystal, the three principal refractive in-
dices n,, n,, and n, are different. The equations of the
two sheets of the indices surface n +(6,¢) and n " (6,¢)
are given by Egs. (8) and (9), respectively, as a function of
the direction of propagation (0,¢). The graphical repre-
sentations of the indices surfaces are given in Fig. 4 for
the positive biaxial class (n, <n, <n,) and for the nega-
tive one (n, >n,>n,) [4]. These conventional cases are
representative of all the possible situations with the ap-
propriate permutation of the principal refractive indices.
There are two directions, contained in the x-z plane, for
which the two refractive indices nt and n ™ are equal;
this defines the two optical axes.

As for uniaxial classes, the phase-matching directions
of the seven phase-matching relations are calculated from
(8), (9), and (14) and correspond to the intersection of the
internal sheet at w, and a combination of the internal and
external sheets at »,, w,, and w; according to Table I.

We give in Table VIII the inequalities between refrac-
tive indices which determine collinear phase matching in
the principal planes of biaxial crystals according to the
optical sign of the class and according to the different sit-
uations of birefringence. These conditions are established
on the same bases we used in a previous paper devoted to
the complete study of phase-matching conditions of
three-wave collinear SFM and DFM [12]. The inequali-
ties written a, b, ¢, and d in Table VIII correspond to
phase-matching directions in specific areas of the princi-
pal planes according to the principal axes and to the opti-
cal axes. The areas are defined in Table VIII. The ex-
istence of a phase-matching cone joining two of these
areas depends on the type of interaction and on

NEGATIVE BIAXIAL CRYSTAL
Dy >Ny >Nz

POSITIVE BIAXIAL CRYSTAL
nx <ny <b
O A : Optical axis
Ordinary wave
———— Extraordinary wave

FIG. 4. Index surfaces of the positive and negative biaxial
classes. €%°_ are the ordinary (o) and extraordinary (e)
electric-field vectors relative to the external (+) or internal (—)
sheets for propagation in the principal planes.
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TABLE VIII. Inequalities between refractive indices determining the collinear phase-matching directions in the principal planes
of biaxial crystals according to the seven types of phase-matched SFM(w,). (n,;,n,;,n;) are the principal refractive indices at the
wavelength A; (i=1,2,3,4). The areas a, b, ¢, and d are defined as following: a, between the z axis and the optical axis of smallest an-
gle 0; b, between the optical axis of greatest angle 6 and the x axis; ¢, between the x axis and the y axis; d, between the y axis and the z

axis.

Phase-matching
directions in the

Inequalities determining four-wave collinear phase matching
in biaxial crystals

principal planes Positive sign Negative sign
SFM Type 1
y1 Ny | Ny3 Nz Nz Nz n;3 Mys Ny Nxy | Nx3
a <——+-—+-—<—— + <——<
Ae M A A A MAh A AN AL A
Ny3 ny4 n; Nz n;3 o7} nyl nyZ ny3 Nyq
b <22y B B L e
}\‘3 A‘-‘ }\‘1 )\'2 }"3 }"4 )\'l }\'2 }\'3 )\’4
21 573 nz3 ny4 nyl ny2 ny3 N4 Ny N2 Nx3
c <Ry B Lt ol s o oal
)\'l A’Z )\'3 }\’4 A’] )"2 )"3 )\'4 A’l A’Z )\'3
ny3 Nxa Nz Nz | N3 Nz Nxy Ny Nx3  Ny4
d +2 e+ <=+ <
VR VR VR VLA VLA W M A A A A
SFM Type II (i =1,j =2,k =3), SFM Type III (i =3,j=1,k =2), and SFM Type IV (i =2,j=3,k=1)
i Ny Nz Nz Nyk Nz Nyi nyj Mok nyq nyi ny; Nxk
a + 2= + -+ <= +H+ F T Z4 2=
M AN A A A R VI VR VY VELEY VL W
Rxk ny4 nyi nyj Nk N4 N n; nyk R xi nxj Ny Nxs
RCLE e A e A 2 PR A A L B L R L3
b P VN VI VLW VR VL VA VL VL VLR V9
j Nk nyi nyj Nk ny4 i nzj nyk N4 ny nzj Rxk
c 2 A ek + 22 +-2+
MO A A A A VR VR VR VN VI VR W
* R4 ny4 nyi nyj Nk i nzj nyk Naq i nzj Rk
c PR AN L + 2o +-L
PV VI VR VL W VR VL VR VI VI VA W
j Nyk Nxq N xi Nyxj Nk N4 Nz nzj Nxk nyi nyj Rxk ny4
d +-2= +-=+ +-L+ ;=
VN VN VA VT U VR VR VL VS T VW
Nxa N i Nyxj Nz i nzj Rxk N4 Ny4 Ny nyj Nxk
d* ok + X4 + -2 4+ ; Pt A A e R e 7 A L
M hs AN M PV W W L VN v T
SFM Type V* (i =1,j =2,k =3), SFM Type VI* (i =2,j=3,k =1), and SFM Type VII* (i =3,j =1,k =2)
Nyk N ny; Ryk N4 Ny, nzj Nae * Mya ny; Nyj Rxk
a ko H DA ko D H oy T T o Y
M A A A A VR VA W VN VL VL W
Nxk Ny4 ny; n;j Nk N4 nsi nyj Nyk Nyi nyj Ny Nxq
b PR L A D e/ A L A L
P VN VL VW U VI T VI e T VW
’ zj Nk nyi nzj Nk ny4 ;i ny] nyk N4 ;i nxj Nxk
c SR B A - SER RN LA AR
T VL VA VW PV VL VI T T T
c** ‘+n;k< Pxa | Mys .’1¥L+_’1_zf;+_’1i"_ Mo Myj o Mok Mae Rai +n"j +n"k




48 FIELD-FACTOR FORMALISM FOR THE STUDY OF THE . . . 4745
TABLE VIIIL. (Continued).
Phase-matchin Inequalities determining four-wave collinear phase matching
. . Ing in biaxial crystals
directions in the
principal planes Positive sign Negative sign
N xi nyj Nyx Nyy M nzj Mok Nz4 Nz Ny Nxk Ny, Nxj Mk Nyq
d' = +-L+ 4 B g e e
A A; Ak Ay A A Ax Ay A Aj A TN Aj Ak Ay
* % Rxi nyj nyk Nys Nxi nzj Rk Ry nxj Rk N4 . ny4 nyi nxj Nxk
e L S e e
d A A Ak Ay A Aj Ax A; Aj Ai Ay Ay A Aj Ak
SFM Type II (i,j)=(1,2), SFM Type III (i,j)=(1,3), and SFM Type IV (i,j)=(2,3)
Conditions c¢,d Myi My P Py Mys Mxs Myi My Ma Mz Mys M
are applied if A A A A A4 Ay A A A A Ay Ay
J J J j
Conditions ¢*,d* Mya  Mxa My My Pxi My Mys _Mea My Moy M Py
are applied if Ay Ay A Aj A; Aj Ay Aq A Aj A -
SFM Type V* (i =1), SFM Type VI* (i =2), and SFM Type VII* (i =3)
Conditions ¢’,d’ yi M My M Myi _Ma _Mys May
are applied if A A Ay Ay A A Ay Aq
Conditions ¢**,d** Mys Mg My Ny Nya  Mza My M
are applied if e Ae A A Ao Ay A A

birefringence. The cones joining a and b, a and ¢, b and
d, and c and d (inequalities ¢ and d for SFM types I, II,
III, and IV, inequalities ¢’ and d’ for SFM types V*, VI,
and VII*) are possible for the seven types of interaction.
Except for type I, cones which join b and ¢ for the posi-
tive class and a and d for the negative class are also al-
lowed (inequalities ¢* and d* for SFM types II, III, and
IV, inequalities ¢ ** and d** for SFM types V*, VI and
VII*). The dispersion in frequency of the refractive in-
dices forbid collinear phase matching for all directions lo-
cated between the four optical axes even if their disper-
sion in frequency is high. The counting of the possible
cases of coexistence of the different cones is not done in
this paper.

It is impossible to define ordinary and extraordinary
waves out of the principal planes of a biaxial crystal. The
two electric-field vectors e and €™ have a nonzero com-
ponent along the z axis. They are calculated from the
equation of propagation projected on the three axes x, y,
and z of the optical frame [7,8]:

e, uy(uel T tue T tuen )
+,—)2 (n+,*)2_(np)2

, 58
(n (58)

with p=x, y,and zand [le*" " || =1.

According to (58), e” and e~ are not perpendicular:
the walkoff angles of the two waves are nonzero and
different. The field tensor relations of orthogonality (20)
which exist for uniaxial crystals are not valid for biaxial
ones. Furthermore, according to (58), there is a rotation
of 90° of the electric-field vectors et and e~ from the
directions b or d to a for phase-matching cones a-b and
a-d; thus an ordinary wave becomes an extraordinary one
and vice versa.

As for uniaxial crystals, it is possible to define ordinary
and extraordinary waves in the principal planes of a biax-
ial crystal: the ordinary electric-field vector is perpendic-

ular to the z axis and to the extraordinary one; relation
(20) is satisfied. The electric fields are represented in Fig.
4 for a propagation in the principal planes.

For a propagation in the x-y plane (area c), the ordi-
nary electric-field vector has a nonzero walkoff angle and
the extraordinary walkoff angle is nil:

el=—sin[¢xp(d,w)],

(59)

es=cos[$+p(¢,0)] , =0,
ei=0, e}f—‘—O , es=1, (60)
with + for the positive class and — for the negative

class. p(¢,w) is the walkoff angle of the ordinary wave,
given by (19) with n, =n, and n, =n,.

Note that in the x-y plane of an uniaxial crystal, the
extraordinary and ordinary waves have a nil walkoff an-
gle for all direction of propagation according to
(17)-(19). The optical sign in the x-y plane is defined by
the sign of the birefringence n,-n,,($), where n,,(¢) is
given by

Ny, (@) =[cos*(¢)/n2+sin®(¢)/np] /% . (61)

Rpg =Ny, By =n,, and n, =n, in the x-y plane.

For a propagation in the y-z plane, the components of
the electric-field vectors are the same as for the uniaxial
class; they are given by (17) and (18) with ¢ =90°. The or-
dinary walkoff angle is nil and the extraordinary one is
given by (19) with n, =n, and n, =n,.

Thus the y-z plane of a biaxial crystal has exactly the
same characteristics for the optical propagation than any
plane containing the optical axis (z axis) of an uniaxial
crystal.

The optical sign is defined by the sign of the
birefringence n,,(0)—n,, where n,,(0) is given by (61),
with n,,(0)=n,,(6), n,=n,, and n,=n,.

In the x-z plane, the optical axis creates discontinuity
of the optical sign and discontinuity of the ellipticity of
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the external and internal sheets of the indices surface ac-
cording to Fig. 4. The optical sign is defined by the sign
of the birefringence n,,(6)-n,, where n,,(6) is given by
(61) with n,,(0)=n, (0), n,=n,, and n,=n,.

The birefringence is nil along the optical axis and its
sign changes on either side. The optical sign is so the
same for all directions of propagation contained is the y-z
plane, the x-y plane, and in the x-z plane from the x axis
to the optical axis. Thus a positive biaxial crystal is nega-
tive in the x-z plane from the optical axis to the z axis;
the situation is inverted for a negative biaxial crystal.

According to Fig. 4, the phase-matching directions a
have an optical sign different from all the others. Then
we call cones of type B the phase-matching cones a-b,
a-d and a-c. The other cones b-c, b-d, and c¢-d are of
type A [4].

For a phase-matching direction contained from the x
axis to the optical axis (area b), the electric-field com-
ponents are given by (17) and (18) with ¢=0°. The ex-
traordinary walkoff angle is given by (19), where n,=n
and n, =n,.

According to (58), the electric-field vectors for a direc-
tion of propagation contained from the optical axis to the
z axis (area a) can be obtained by a rotation of 90° of e°
and e® associated to a propagation in area b or area d.
Then, according to (17), the extraordinary electric-field
vector is given by (18) with ¢=0° and the ordinary one is
out of phase by 180° in relation to (17) according to (18),
that is,

ey=0, ey=—1, ¢)=0. (62)

The extraordinary walkoff angle is given by (19), with
n,=n, and n, =n,. Thus the symmetry of the field ten-
sor of all phase-matching directions in the principal
planes of a biaxial crystal is exactly the same as for any
phase-matching direction in an uniaxial crystal. All the
considerations developed in Sec. III are also suitable to
the study of the principal planes of biaxial crystals. Out
of the principal planes, the field tensors are less sym-
metric than for a propagation in the principal planes be-
cause of the nonperpendicularity of the two eigenmodes
et and e; thus the field tensors have 81 nonzero and in-
dependent elements in the general case. Out of the prin-
cipal planes, the only possible symmetries are due to
equalities between frequencies: the field tensors are sym-
metric in the Cartesian indices relative to electric-field
vectors of same eigenmode at the same pulsation or at
different pulsations if the dispersion in frequency of the
walkoff angle is negligible.

We keep the designation of 3oe, 3eo, and 202e for the
phase-matching cone of type 4. We denote by 3oe-3eo,
3eo-30e, and 202e-2e20 the configurations of polarization
for the phase-matching cone of type B in order to show
the change of polarization on either side of the optical
axis; for example, a 3oe interaction for a propagation in
area b, ¢, or d is 3eo in area a.

X

A. Cone of type A. Comparison with the uniaxial class

We take the example of KTiOPO, (KTP), which is a
positive biaxial crystal belonging to the crystal class
C,,(mm?2). We consider the collinear phase-matched

B. BOULANGER, J. P. FEVE, AND G. MARNIER 48

SFM (1/0.61 pum=1/3.0 pym+1/2.73 pm-+1/1.064
pm). The corresponding refractive indices are the follow-
ing [13]:

n,=1.7004, n,=1.7062, n,=1.7800 at A,=3 um ,

n,=1.7067, n,=1.7129, n,=1.7876
at A,=2.73 um , (63)

n,=1.7399, n,=1.7480, n,=1.8296
at A;=1.064 um ,

n,=1.7663, n,=1.7763, n,=1.8675

at A,=0.61 um .

KTP is a quasiuniaxial crystal since n, is close to n, com-
pared to n,. We consider the SFM type II 3oe, type I
3eo, and type V* 202e. The corresponding phase-
matching directions calculated according to Table II and

from (63) are located from (6=78.71°¢=0°) to
0.20 T T T T .V, 1 ‘T T
KTP (positive biaxial crystal)
Type II 3o0e (a)
UNIAXIAL FUNCTIONS
o
=)
g
o
&
o
=
Q
<
[
(=]
-]
=
=
-0.20 1 1 | I U U R S
0 10 20 30 40 50 60 70 80 90
PHASE-MATCHING ANGLE ¢ (deg)
0.0175 7T T T v T T T 7T T
KTP (positive biaxial crystal)
0.0150 Type II 30e (b)
: B BIAXIAL FUNCTIONS T
00125 | 15a 4
%omoo | 15a 15b,15¢ |
s
L
= 00075 | 15b,15¢ )
o
[
Q
= 00050 | ]
(=]
—
=
= 00025 [ 4
0.0000
N\ 102,10b,10c,10a,10b,10c,13
-0.0025 | PO S | 1. I L.

0 10 20 30 4 50 60 70 8 90
PHASE-MATCHING ANGLE ¢ (deg)

FIG. 5. Intervening 3oe uniaxial (a) and biaxial (b) field-
factor functions vs the phase-matching spherical coordinate
¢, calculated for type-Il SFM (1/0.61=1/3.0+1/2.73
+1/1.064 pm) in KTP (crystal class C,, ).
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"7 KTP (positive biaxial crystal) '
0.20 Typel 3eo
i I~ UNIAXIAL AND BIAXIAL FUNCTIONS T
0.10
&
To
<
L~
e 0.00
8 \ 11a,11b,1Tc lla,llb/
0
=
=
(=)
2 -010
ol
<
0.20

0 10 20 30 40 50 60 70 80 90
PHASE-MATCHING ANGLE ¢ (deg)

FIG. 6. Intervening 3eo uniaxial and biaxial field-factor func-
tions vs the phase-matching spherical coordinate ¢, calculated
for type-I SFM (1/0.61=1/3.0+1/2.73+1/1.064 um) in
KTP (crystal class C,,).

(0=63.94°,6=90°), from (0=52.09°,¢=0") to
(6=42.61°,§=90°), and from (0=59.57°,6=0°) to
(6=49.68°,¢=90°), respectively. The calculated inter-
vening field factors are plotted as a function of the spheri-
cal coordinate ¢ of each phase-matching direction in
Figs. 5(a) and 5(b) for 3oe, Fig. 6 for 3eo, and Fig. 7(a) and
7(b) for 202e. The correspondences between tri-
gonometric functions and field factors are given in Tables
1V and IX for 3o0e, Tables VI and X for 3eo, and Tables
VII and XI for 202e.

The functions of Figs. 5(a), 6, and 7(a) concern the
same field factors as the nonzero elements of the corre-
sponding interactions in uniaxial crystals and are the so-
called uniaxial functions. The functions N, N', and N’
are now different.

The uniaxial functions of the biaxial class are all the
more similar to those of the uniaxial class (Figs. 1-3)
since n, approaches n,. The functions of Figs. 5(b), 6,
and 7(b) are specific to the biaxial class and are called bi-
axial functions. They are nil in the principal planes. Out
of the principal planes, these functions are all the smaller
since the biaxial crystal “tends” to a uniaxial one, that is,
n, approaches n,. Thus the elements of the tensor X of
a quasiuniaxjal biaxial crystal are weakly involved by the
specific biaxial field factors. Nevertheless, their contribu-
tion can be non-negligible in comparison with those soli-
cited by the uniaxial field factors, according to their rela-
tive sign.

B. Comparison between cones of types 4 and B

We consider the thiosemicarbazide cadmium chloride
monohydrate (TSCCC), a new positive biaxial crystal
which belongs to the crystal class C,(m). We show the
difference between area a and area d by comparison be-

tween two type-I collinear phase-matched THG
(1.15—0.38 pm) which allows a cone of type 4 and
(1.32—0.44 um) which allows a cone of type B. The in-
tervening refractive indices are the following [14]:

n, =1.6458, n,=1.7088, n,=1.7337,
at A;=1.32 um ,
n,=1.6978, n,=1.7757, n,=1.8033
at A,=0.44 um ,
n,=1.6481, n,=1.7127, n,=1.7366 (64)
at Ay=1.15 ym ,
n,=1.7196, n,=1.8031, n,=1.8339
at A,=0.38 um .
0.8 T T T T T+ T T T T
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0.6
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FIG. 7. Intervening 202e uniaxial (a) and biaxial (b) field-
factor functions vs the phase-matching spherical coordinate ¢,
calculated for type-V* SFM (1/0.61=1/3.0+1/2.73
+1/1.064 um) in KTP (crystal class C,, ).
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TABLE X. Correspondence between 3eo, 3eo-3oe biaxial functions and field factors according to the four corresponding types of
phase-matched SFM(w,).

3eo and 3eo-3oe biaxial field-factor functions

Optical - — = —

Interactions sign 1la 11b 1lc 1la 116 1lc 12a 12b 12¢ 12a’ 12b' 12¢’ 13a 13b 13¢ 13a 13b 13¢c 14
Type I >0  zXXz zXzX ZzzZXX Zyyz Zyzy ZZYY 2ZXYZ ZXZY ZIXY 2ZYXZ 2YZX 2ZYX ZXZZ ZZXZ ZZZX ZYZZ ZZYZ ZZZY ZZZZ
Type 11 <0  zxXz XXzz XzXz ZYYZ YyzZ yzyz ZXYZ YX2Z YIXZ ZYXZ XYZZ XZYZ 2ZXZZ 2ZXZ XZZZ ZYZZ ZZIYZ YZZZ ZZZZ
Type III <0  zxzx XXzz XzzZX Zyzy Yyzz yzZy ZXZY YXZZ Y2ZX ZYIX XYZZ X2ZZY ZXZZ Z2ZZX XZZZ ZYZZ ZZZY YZZZ ZZZZ
Type IV <0  zzxx XzXz XzzXx ZzZZyy YZYz yzzy 2ZXY YZIXZ YZZX 2ZYX XZIYZ X2ZYy ZZXZ ZZZX XZZZ ZZIYZ 2ZZY YZZZ ZZZZ

Optical _ . _ _
Interactions sign 15 15 16a 165 16¢ 16a 16b 16¢
Type 1 >0 ZXXX zyyy Zyxx ZXyx zZxxy zZXyy zyxy zyyx
Type 1I <0 XXXz yyyz xyxz xxyz yxxz yxyz yyxz xyyz
Type III <0 xxzx yyzy xyzx xxzy yxzx yxzy yyzx xyzy
Type IV <0 XZXX yzyy XZyx xzxy yzxx yzxy yzyx xzyy

In Fig. 8(a), we give the angle of polarization a of each e’ or e, calculated by (58), on the plane I-J, defined as
electric field as a function of the coordinate 6 along the the following in the optical frame (x,y,2):

cones of types 4 and B. The angle « is defined in relation

to an orthornormal frame (I,J,K) with K collinear to the x;=—cos$ cosf, y;=—singcosf, z;=sinf,

wave vector k:

=sing, =-—cos¢, z,=0, (66)
a=arctan(e; /e;) . 65) x;=sing, y; b, z;

e; and e; are the projections of each electric-field vector xg =sinf cosp, yg =sinfsing, zx=cos6 .

TABLE XI. Correspondence between 202e, 202e-2e20 biaxial functions and field factors according to the six corresponding types
of phase-matched SFM(w,).

202e and 202e-2e20 biaxial field-factor functions

Optical _ . . _ . _
Interactions sign 11a 115 11a 115 12a 126 12¢ 12d 12a 12b 12¢ 12d 13a 136
Type V* >0 Yzzz  zyzz  Xzzz < 2zX2Z  XZYZ  XZZY  ZXYZ  ZXZYy  YZXZ  YzZX  ZYXZ  ZYZX  YIZXX  ZPXX
Type VI* >0 yzzz  zzyz < XZzz = ZZXZ < XYZZ  XZZY  ZYXZ  ZZXY  YXZZ  YzZX  ZXYZ  2ZYX  YXZX  ZXPX
Type VII* >0 yzzz  zzzy  X2zz  22ZX  XYzZ < XZYZ  ZYZX = ZZYX = YXZZ  YZXZ  2ZXZy = 2ZXy  YXXZ  ZXX)
Type V* <0 zzyz  zzzy  2ZXZ  ZZzZX  ZYXZ  yZXZ  ZYZX  YZZX  ZXYZ  XZYZ  zZXzy  X2ZZy  XXPZ = XXZy
Type VI* <0 zZyzz = zzzy  zX2Z  Z2zZX  ZXYZ  YXZZ  ZZPX  YZZX  ZYXZ  XYZZ  ZzXy X2z  XPXZ  XZXp
Type VII* <0 Zyzz  zzpz  ZXZZ  2ZXZ < ZXZY  YXZZ  ZZXYy  YZXZ  ZYZX XYZZ  ZZPX  XZYZ = XPIX  XZPX
Optical . _ _ _ _ _ —_
Interactions sign 13¢ 13b 14a 14b 14c 14d 14a 14b 14c 14d 15a 15a 150 15'b 15a 15a
Type V* >0 XZyy ZXYY XZXZ XZZX ZXXZ ZXZX YZYZ yzZy ZYYZ Zyzy YZXYy YIYX ZYXY ZYPX XZYX XZX)
Type VI* >0 Xyzy zZyXy XXzZZ XZZX ZXXZ 2ZXX Yyzz yzZy ZYYZ ZZYYy YXZY YYIX ZXYY ZYYX XYZX XXZY
Type VII* >0 Xyyz zZYyX XX2Z XzZXZ ZXZX ZZXX YYZZ YZVZ ZyZy zZYy YXYZ YYXZ zZXYy ZPXYy XYXZ XXyZ
Type V* <0 YyXz yyzx zZXXZ XZXZ 2ZXZX XZZX ZYYZ YZYZ zZyZy YIZY YXYZ XYYz YXZy XYZP XPXZ YXXZ
Type VI* <0 YXyz yzyx zXXZ XX2ZZ ZZXX XZZX ZYYZ yyzZz ZZYY YZZYy YYXZ XYYz YzXy Xzyy XXYZ PXXZ
Type VII* <0 YXZy yZXy ZXZX XX2ZZ ZZXX XZXZ ZYZy YYZZ ZZVY YZVZ YYZX Xyzy YIZYX XZYYy XXZy PXZX
Optical . _ _ _ _ .

Interactions sign 156 15'b 16a  16b 16a 16b 17 17 18 18’ 19 190 19¢ 196 20
Type V* >0 ZXyX  zZXXy yzyy Zyyy XzXX ZXXX ZzVY ZZXX ZZXy 2ZyX ZZyZ ZzZy  ZZXZ 22ZX @ Z22ZZ
Type VI* >0 ZyxXx  zZXXy yyzy @ zyyy XXZX ZXXX ZYZy ZXZX ZXZy 2ZYZX ZyzZ Zz2Zy @ ZX2Z ZZZX  ZZ2Z
Type VII* >0 ZyxXX zZXyx yyyz zyyy XXXz ZXXX ZYyZ ZXXZ ZXYZ ZYXZ Zyzz ZZyZ 2ZX2ZZ ZZXZ Z2ZZZ
Type V* <0 XyzZX  YXzZX Yyyz yyzy XXXZ XXZX YYZZ XX2Z YXZZ Xy2Z zZyzZ yzzZ 2ZXZZ X2ZZ ZZ2Z
Type VI* <0 XZyX  yzZXX Yyyz yzyy XXXz XzZXX YZyYZ XZXZ YIZXZ X2ZYZ ZZyZ YZzZ ZZXZ XZZZ  Z2Z2Z

Type VII* <0 XzXy yzxXx  yyzy yzyy XXZX XZXX YzZy XZZX YZZX XZZy Z2Zy yzzZ Z2ZX X2ZZ  222Z
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TABLE XII. 30e, 30e-3eo, 3eo, 3eo-30e, 202e, 202e-2¢e20 field-factor functions intervening in the cal-
culation of the effective coefficient x4 for the biaxial crystal classes.

Biaxial
crystal classes C,,C; C;,C,,Cyy C,,,D,,Dy
Intervening 3oe all 2,2
and 3oe-3eo 4,4',4" 4,4 4"
field-factor functions 55 4,4',4" 4,4 3"
6,6',6",6,6',6" 5,5 o
8a,8b,8¢c,8a,8b,8c 10a, 10b, 10c, 10a, 10b, 10c
10a, 10b, 10c, 10, 105, 10¢ 13 o
13 o 15a, 15b, 15¢, 154, 15b, T5¢
15a,15b,15¢,15a,15b,15¢
17a,17'a,17b,17'b,17¢,17'c
Intervening 3eo all 2a,2b,2¢,2a,2b,2¢
and 3eo-3oe 4a,4b,4c¢,4a,4b,4c
field-factor functions 7,7 4a,4b,4c,4a,4b,4c
8,8',8",8,8,8" 9,9 o
9,9 o 10,10',10", 10,10/, 10" _
10,10, 10”,%_,_10'40”_ 11q,11b,11¢,11a,11b,11¢
11a,11b,11¢,11a,11b,11c¢ 14
12a,12b,12¢,12'a,12'b,12'c
14
Intervening 202e all 1,1,4,4
and 202e-2e20 6,6',6,6'
field-factor functions 7,7,7,7 4.4
8,899 8,8
10,10',10, 10’ 9,9
12a,12b,12c, 12d 10,10',10,10’

12a,12b,12¢,12d
14a,14b,14c,14d
14a,14b, 14c, 14d
17,17,18,18’

20

144, 14b, 14c, 14d
14a,14b,14c,14d
17,17

20
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a=0° corresponds to an extraordinary wave and a=90°
to an ordinary wave. According to Fig. 8(a), the four
electric-field vectors turn 90° for the cone of type B; the
configuration of polarization is 3eo in area ¢ and 3oe in
area a. For the cone of type A, the configuraiton is 3eo in
area c¢ and in area d. We give in Fig. 8(b) the field factors
of types A and B cones, calculated from (4) and (64),
which differ in area a.

According to the nonzero elements of x'*), we give in
Table XII the trigonometric functions of the field factors
intervening in the calculation of the effective coefficient
for the eight biaxial crystal classes. Table XII must be
read with Tables IV, VI, VII, IX, X, and XI. All the bi-
axial crystal classes allow the four-wave nonlinear optical
parametric interactions for all types of collinear phase
matching.

V. CONCLUSION

The use of the field-factor formalism allows an unified
description of the phase-matched four-wave SFM and
DFM. Even if the third-order nonlinearity of the crystal
is high and even if phase-matching directions exist, the
efficiency of the interaction can be nil because of symme-

try of the ¥’ and F® tensors: the effective coefficient is
nil for 3oe and 3eo configurations of polarization in the
uniaxial crystal classes Dg(622), Dg,(6/m m m),
D,,(62m), and Cg,(6mm). It is also the case under
Kleinman’s conjecture for the four previous classes and
the three other hexagonal classes C;,(6), C¢(6), and
C¢,(6/m). Thus this study completes the calculation of
the third-order electric susceptibility tensor elements
from crystallographical and chemical criteria within the
context of the study and optimization a priori of a crystal
for a given nonlinear interaction [15,16]. The study of
the angular variation of field factors for the 14 possible
phase-matched configurations of polarization is a guide
for the judicious choice of interaction and phase-
matching direction in order to perform the best deter-
mination of all the usefull x'* elements by phase-
matching experiments.
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